ISBN-10:
3642066909
ISBN-13:
9783642066900
Pub. Date:
11/25/2010
Publisher:
Springer Berlin Heidelberg
The Variational Bayes Method in Signal Processing / Edition 1

The Variational Bayes Method in Signal Processing / Edition 1

by Václav Smídl, Anthony Quinn
Current price is , Original price is $139.99. You

Temporarily Out of Stock Online

Please check back later for updated availability.

Overview

This is the first book-length treatment of the Variational Bayes (VB) approximation in signal processing. It has been written as a self-contained, self-learning guide for academic and industrial research groups in signal processing, data analysis, machine learning, identification and control. It reviews the VB distributional approximation, showing that tractable algorithms for parametric model identification can be generated in off-line and on-line contexts. Many of the principles are first illustrated via easy-to-follow scalar decomposition problems. In later chapters, successful applications are found in factor analysis for medical image sequences, mixture model identification and speech reconstruction. Results with simulated and real data are presented in detail. The unique development of an eight-step "VB method", which can be followed in all cases, enables the reader to develop a VB inference algorithm from the ground up, for their own particular signal or image model.

Product Details

ISBN-13: 9783642066900
Publisher: Springer Berlin Heidelberg
Publication date: 11/25/2010
Series: Signals and Communication Technology
Edition description: Softcover reprint of hardcover 1st ed. 2006
Pages: 228
Product dimensions: 6.10(w) x 9.10(h) x 0.70(d)

Table of Contents

Bayesian Theory.- Off-line Distributional Approximations and the Variational Bayes Method.- Principal Component Analysis and Matrix Decompositions.- Functional Analysis of Medical Image Sequences.- On-line Inference of Time-Invariant Parameters.- On-line Inference of Time-Variant Parameters.- The Mixture-based Extension of the AR Model (MEAR).- Concluding Remarks.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews