The Turk: The Life and Times of the Famous 19th Century Chess-Playing Machine

The Turk: The Life and Times of the Famous 19th Century Chess-Playing Machine

by Tom Standage


$20.08 $24.00 Save 16% Current price is $20.08, Original price is $24. You Save 16%.


On an autumn day in 1769, a Hungarian nobleman named Wolfgang von Kempelen attended a conjuring show at the court of Maria Theresa, empress of Austria-Hungary. So unimpressed was Kempelen by the performance that he declared he could do better himself. Maria Theresa held him to his word and gave him six months to prepare a show of his own. Kempelen did not disappoint; he returned to the court the following spring with a mechanical man, fashioned from wood, powered by clockwork, dressed in a stylish Turkish costume—and capable of playing chess.

The Turk, as this contraption became known, was an instant success, and Tom Standage's book chronicles its illustrious career in Europe and America over the next eighty five years. Associated over time with a host of historical figures, including Benjamin Franklin, Catherine the Great, Napoleon Bonaparte, Charles Babbage, and Edgar Allan Poe, Kempelen's creation unwittingly also helped to inspire the development of the power loom, the computer, and the detective story. Everywhere it went, the Turk baffled spectators and provoked frenzied speculation about whether a machine could really think. Many rival theories were published, but they served only to undermine each other.

Part historical detective story, part biography, The Turk relates the saga of the machine's remarkable and checkered career against the backdrop of the industrial revolution, as mechanical technology opened up dramatic new possibilities and the relationship between people and machines was being redefined. Today, in the midst of the computer age, it has assumed a new significance, as scientists and philosophers continue to debate the possibility of machine intelligence. To modern eyes, the Turk now seems to have been a surprisingly farsighted invention, and its saga is a colorful and important part of the history of technology.

Product Details

ISBN-13: 9780802713919
Publisher: Walker & Company
Publication date: 04/01/2002
Pages: 224
Product dimensions: 5.68(w) x 8.08(h) x 1.05(d)

About the Author

Tom Standage is technology editor at The Economist magazine and the author of four history books, "A History of the World in Six Glasses" (2005), "The Turk" (2002), "The Neptune File" (2000) and "The Victorian Internet" (1998), two of which have been serialized as "Book of the Week" on Radio 4. "The Victorian Internet was made into a Channel 4 documentary, "How The Victorians Wired the World". Tom has previously covered science and technology for a number of newspapers and magazines, including The Guardian, The Daily Telegraph, Wired and Prospect. He holds a degree in engineering and computer science from Oxford University, and is the least musical member of a musical family. He is married and lives in Greenwich, London, with his wife and daughter.

Read an Excerpt

The Turk
The Life and Times of the Famous Eighteenth-Century Chess-Playing Machine

By Tom Standage

Walker & Company

Copyright © 2002 Tom Standage.
All rights reserved.
ISBN: 0802713912

Chapter One

The Queen's
Gambit Accepted

THE QUEEN'S GAMBIT (D4 D5 C4): An opening in which White attempts to sacrifice his queen's bishop's pawn to accelerate the development of his position. Black accepts the gambit by taking the offered pawn.

You seek for knowledge and wisdom as I once did; and I ardently hope that the gratification of your wishes may not be a serpent to sting you, as mine has been.

—Mary Shelley, Frankenstein (1818)

Automata are the forgotten ancestors of almost all modern technology. From computers to compact-disc players, railway engines to robots, the origins of today's machines can be traced back to the elaborate mechanical toys that flourished in the eighteenth century. As the first complex machines produced by man, automata represented a proving ground for technology that would later be harnessed in the industrial revolution. But their original uses were rather less utilitarian. Automata were the playthings of royalty, both as a form of entertainment in palaces and courts across Europe and as gifts sent from one ruling family to another. As well as being a source of amusement, automata provided a showcase for each nation's scientific prowess, since they embodied what was, at the time, the absolute cutting edge of new technology. As a result, automata had a far greater social and cultural importance than their outward appearance as mere toys might suggest.

    The first automata were essentially scaled-down versions of the elaborate mechanical clocks that adorned cathedrals across Europe from medieval times. As well as displaying the time, these clocks often had astronomical features (such as the phase of the moon) and, in some cases, entire mechanical theaters that sprang to life on particular occasions. A typical configuration involved figures of the Madonna and Child, who would appear through a doorway on specific feast days as the clock struck the hour. They would be followed by figures representing the three kings, shepherds, and so on, all of whom would genuflect before the Madonna, present their gifts, and then disappear through another door. A good example can still be seen today on the clock tower of St. Mark's in Venice. Municipal clocks in town squares subsequently adapted this formula but replaced the religious figures with kings, knights, trumpeters, birds, and other animals. These clocks provided the inspiration for smaller and increasingly elaborate automata that clockmakers sold to rich customers. As these devices became more complicated, their time-keeping function became less important, and automata became first and foremost mechanical amusements in the form of mechanical theaters or moving scenes.

    One popular kind of automaton was the mechanical picture, a painting with moving parts driven by an elaborate clockwork mechanism hidden behind or within the frame. Another type of automaton, also intended as a conversation piece, took the form of a table ornament. Such devices could hold cutlery, napkins, and spices, had spouts to dispense wine or water, were decorated with moving figures or animals, and often incorporated a clock. A particularly fine example, made for Emperor Rudolph II by Hans Schlottheim, a German automaton maker, can be seen today in the British Museum.

    Another influence on the design of automata was the long tradition of imitating nature through the construction of mechanical animals. The Italian artist and inventor Leonardo da Vinci, for example, designed a flying machine modeled on a bird and is said to have made a mechanical lion. His fifteenth-century German contemporary, Johann Müller, known as "Regiomontanus," presented Emperor Maximilian with an iron fly and a mechanical eagle, which is reputed to have escorted the emperor to the city gates of Nuremberg, though exactly how is unclear. Even less plausible is the brass fly constructed by Bishop Virgilius of Naples. It supposedly chased all the real flies from the city, which remained free of flies for eight years.

    Inspired by such tales, makers of automata enjoyed the challenge of making machines that were capable of moving in a lifelike manner. There were music boxes and snuffboxes out of which singing birds or dancing figures appeared, and innumerable mechanical animals. One eighteenth-century automaton-maker, an Englishman named James Cox, made an eight-foot-high mechanical elephant encrusted with diamonds, rubies, emeralds, and pearls. Cox was renowned for his automata and mechanical clocks, many of which were sold or sent as gifts to China by the East India Company. His other creations included a mechanical tiger, a peacock, and a swan.

    Sometimes automata imitated living things a little too credibly, as was the case with a supposed automaton harpsichord player that made an appearance at the court of the French king Louis XV during the 1730s and enchanted listeners with its musical ability. The king insisted on being shown the mechanism that could play in such a charming and lifelike manner, whereupon a five-year-old girl was found concealed inside the machine.

    Other famous (but genuine) automata included the writer, draftsman, and harpsichord player constructed by Henri-Louis Jaquet-Droz, a member of a Swiss family of clockmakers. The movements of these automata, which could write, draw, and play music respectively, were programmed using irregularly shaped disks, called cams, threaded onto a spindle. As the spindle rotated, spring-loaded levers resting on the cams moved up and down, and controlled the motion of the automaton's various parts by pushing and pulling on connecting rods. By paying meticulous attention to the shapes of the various cams, one could program an automaton to make coordinated, lifelike movements of extraordinary grace and subtlety. Similar writing automata were built in the 1750s for Maria Theresa, empress of Austria-Hungary, by Friedrich von Knauss, an Austrian inventor who is also credited with the invention of the typewriter.

    Since only the very rich could afford to buy their extravagant contraptions, makers of automata moved in elevated circles and often ended up in the direct employ of kings, queens, and emperors. Building automata thus provided a good way for serious-minded clockmakers, engineers, or scientists seeking patronage to demonstrate their abilities and establish reputations for themselves; tinkering with mechanical toys could lead to both fame and fortune. Perhaps the best example is provided by the Frenchman Jacques de Vaucanson, whose inventions dazzled Europe in the mid-eighteenth century, and whose renown as an automaton maker enabled him to move effortlessly between the worlds of entertainment, industry, and science.

Vaucanson was born in 1709, the youngest of ten children, and studied theology at the Jesuit college in Grenoble with a view to becoming a monk. He also enjoyed building mechanical toys, and he soon found that this was incompatible with his religious vocation. According to one story, he built tiny flying toys in the form of angels, which angered his superiors; another tale suggests that it was a table automaton that got Vaucanson into trouble with a senior official of his religious order. In any case, forced to choose between his religious calling and his enthusiasm for elaborate machinery, he renounced the religious life and decided instead to devote himself to building automata.

    Like other automaton makers, Vaucanson was particularly interested in building machines capable of imitating the natural processes of living beings, including respiration, digestion, and the circulation of the blood. His ultimate goal was to build an artificial man. But Vaucanson soon realized that in order to pursue this goal, he would first have to put his talents to commercial use and raise money "by producing some machines that could excite public curiosity." Displays of automata were becoming increasingly popular, particularly in Paris and London, where they provided an opportunity for the public to witness a variety of elaborate machinery that they would never have been able to afford to buy for themselves.

    The automaton that first brought Vaucanson to public attention took the form of a flute player. One day in 1735, while walking through some public gardens in Paris, he saw a statue of a boy holding a flute to his lips and was inspired to build a moving statue that could actually play melodies. The primary purpose of the automaton was to enable Vaucanson to investigate the human respiratory system, and to this end he furnished it with artificial lungs, windpipe, and mouth, to which it held its flute. The lungs consisted of three sets of bellows, driven by a rotating crankshaft, to ensure a constant flow of air at low, medium, and high pressure. A set of valves adjusted the amount of air at each pressure that was allowed into the windpipe, and another valve in the mouth regulated the airflow, performing the function of the tongue. The movements of these valves, together with those of the fingers and the lips, were controlled by a set of spring-loaded levers whose ends rested on the surface of a rotating drum. The surface of the drum was covered with small studs; as the ends of the levers passed over these studs, they rose and fell, causing the automaton to move its fingers and lips accordingly. This meant that every aspect of the automaton's complex operation could be programmed in advance by inserting a suitable configuration of studs into the surface of the drum. The automaton could thus be made to play intricate melodies and mimic almost all of the subtleties of a human flute player's breathing and musical expression.

    Vaucanson put his flute player on public display in Paris in October 1737, and it was an immediate success. Mindful of the false automaton that had deceived the court of Louis XV, Vaucanson subsequently allowed his flute player to be scrutinized by members of the Academy of Sciences in Paris, one the world's leading scientific societies, to dispel any question of trickery. One account of the event written by Juvigny, a French politician, recorded that "at first many people would not believe that the sounds were produced by the flute which the automaton was holding. These people believed that the sounds must come from an organ enclosed in the body of the figure. The most incredulous, however, were soon convinced that the automaton was in fact blowing the flute, and that the breath coming from his lips made it play and that the movement of his fingers determined the different notes. The machine was submitted to the most minute examination and to the strictest tests. The spectators were permitted to see even the innermost springs and to follow their movements." Vaucanson's flute player was thus proven to be an entirely genuine automaton. What the false automaton had accomplished through trickery, Vaucanson had achieved through a combination of ingenuity and the latest in mechanical technology.

    Within a few months he had completed a second automaton, this time of a boy playing a pipe with one hand and a drum with the other. With only one hand to play the three-holed pipe, the sound it produced was far more dependent on the air pressure, the tonguing, and the position of the automaton's fingers. It thus presented a further challenge to Vaucanson's ability to mimic human subtleties. But it was Vaucanson's third automaton, a model of the digestive system, that was to become his most famous creation. Instead of building it in the form of a person, Vaucanson decided to imitate an animal and built a mechanical duck.

    He described this automaton in a letter to a contemporary as "an artificial duck made of gilded copper that drinks, eats, quacks, splashes about on the water, and digests his food like a living duck." The duck could stretch out its neck, take grain from a spectator's hand, and then swallow, digest, and excrete it. The duck's wings were anatomically exact copies of real wings, with each bone rendered in metal and adorned with a few feathers. The duck could even flap its wings and create a gentle breeze. But while spectators were chiefly struck by the extraordinarily lifelike nature of the duck, Vaucanson was chiefly interested in its innards, which he left exposed to view. The duck's insides imitated the digestive process by dissolving the grain in an artificial stomach, from where it was passed along tubes and excreted. In the process of building this automaton, Vaucanson pioneered the development of flexible rubber tubing.

    In common with Vaucanson's other automata, the duck was mounted on a wooden pedestal, and its mechanism was powered by a falling weight, in the same way as a grandfather clock. The weight was suspended on a cord, which was wrapped around a large drum. As the weight fell, it turned the drum, thus directing the duck's movements through an elaborate system of cams and levers. In the words of Juvigny, "During the time that this artificial animal was eating grain from someone's hand, drinking and splashing in the water brought to him in a vase, passing his excrements, flapping and spreading his wings and imitating all the movements of a living duck, everybody was allowed to look inside the pedestal. In this were all the wheels, all the levers, and all the wires communicating through the animal's legs with the different parts of his body and this was likewise open to view. As with the flute-player, a weight was the one and only source of power to set the whole thing in motion and keep it moving."

    Such was the acclaim that greeted these extraordinary machines—Voltaire described their inventor as "bold Vaucanson, rival to Prometheus"—that Vaucanson allowed them to go on a tour of the courts of Europe, as ambassadors for French ingenuity and scientific advancement. Vaucanson was made a member of the Academy of Sciences in Paris; King Frederick II of Prussia offered him a job with a generous salary of 12,000 livres; he was even given the opportunity by Louis XV of France to go on an expedition to Guiana in order to further the development of his new rubber tubing.

    However, Vaucanson decided to stay in France and pursue his goal of building an artificial man. Once it was completed, he hoped to use this automaton "to perform experiments on animal functions, and thence to gather inductions to know the different states of health of men so as to remedy their ills." But this ambitious project quickly stalled, so in 1741 Vaucanson accepted the offer of the lucrative government post of inspector of manufactures, with responsibility for applying his mechanical ingenuity to the modernization of the French weaving industry. He drew up elaborate plans to transform manufacturing methods and work practices. But his reorganization plans were abandoned when the silk workers of the city of Lyons, who were to try out his new ideas, heard of his scheme and complained that they would be herded into factories and forced to act as mere drudges on a production line. Wary of becoming human parts in what would be, in effect, a huge automaton, they rioted in the streets, forcing Vaucanson to disguise himself as a monk and flee for his life.

    Vaucanson returned to Paris, where he decided to withdraw from the limelight. In 1743, he sold his trio of automata to a consortium of businessmen from Lyons, who showcased them at the Haymarket theater in London and subsequently displayed them across Europe. Vaucanson was appointed official examiner of new machine inventions at the Academy of Sciences in Paris and spent his remaining years working on many other inventions,...


Excerpted from The Turk by Tom Standage. Copyright © 2002 by Tom Standage. Excerpted by permission. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.


Exclusive Author Essay
What do Ben Franklin, Napoleon, the invention of the detective story, and modern computer technology have in common? They are all connected by a chess-playing robot built in 1769 by a Hungarian nobleman. Known as the Turk, the machine consisted of a wooden mannequin, dressed in an ermine-trimmed robe and loose trousers and seated behind an ornate cabinet, with a clockwork-powered arm to move the chess pieces. It was originally built to amuse Maria Theresa, empress of Austria-Hungary, and subsequently toured Europe and America. Ben Franklin lost to it; Napoleon challenged it to a game and then tried to cheat; and Edgar Allan Poe inadvertently invented the detective story while attempting to explain how it worked. But could a machine really play chess, which requires the ability to think logically? Everywhere it went, the Turk inspired heated discussion of the possibility of machine intelligence -- 150 years before the invention of the modern computer.

The story of the Turk, and its eerie parallel with today's debate about the prospects for artificially intelligent computers, is just one example of how modern technologies often have surprisingly deep historical roots. In my writing, I particularly enjoy following these kind of links back and forth between the historical and the contemporary. My first book, The Victorian Internet, looked at the similarities between the telegraph network of the 19th century and the modern Internet. (The Victorians, you may be surprised to hear, had online romances, chat rooms, flame wars, hackers, and online gaming as early as the 1840s.) Similarly, my second book, The Neptune File, drew parallels between the discovery of Neptune in 1846 and today's discoveries of planets around other stars. Like Neptune before them, new worlds are being discovered through the analysis of their gravitational effects on other bodies -- the planets are seen indirectly, using mathematics, rather than directly by telescopes.

There are plenty of other examples. Modern medical imaging technology turns out to have much in common with 17th-century waxworks, the high-tech visualization systems of their time. Virtual reality and virtual museums were popular in the 19th century in the form of panoramas and plaster casts. Micro-electro-mechanical systems, tiny machines etched in silicon, hark back to the mechanical calculators and computers of the pre-electronic era. Solitons, which are special waveforms used to send pulses of light down fiber-optic cables, were first noticed in 1834 by a Scottish scientist who was riding a horse alongside a canal and saw an interesting wave go past. Fuel cells, which look like they will be powering our cars in a decade or so, were actually invented in 1839. And so on.

You may be thinking, So what? I think highlighting such parallels is worthwhile for a number of reasons. First, it gives historical tales a contemporary relevance. It also puts modern discoveries and inventions, which are often overhyped, into proper historical perspective. Furthermore, the reactions to new breakthroughs, and the uses they are put to, seem to vary very little over the centuries, which suggests that as new inventions come and go, human nature remains essentially unchanged. In short, I believe it is often possible to learn valuable lessons from the history of science and technology, which is why I enjoy writing about it so much and creating hyperlinks, if you will, between the past and the present. (Tom Standage)

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews

The Turk: The Life and Times of the Famous 19th Century Chess-Playing Machine 4 out of 5 based on 0 ratings. 4 reviews.
lunamonty on LibraryThing More than 1 year ago
The story of a chess-playing mechanical man, dressed in a Turkish costume, that delighted and perplexed audiences long before the advent of modern computers. Had an arrangement of clockwork gears really been made to "think"? A highly entertaining history of an early technological enigma and the people whose lives it touched.
tgraettinger on LibraryThing More than 1 year ago
Read early 2008 - An interesting story, but I think it could have been the subject of a 25-page paper rather than a full-length book.
Anonymous More than 1 year ago
Guest More than 1 year ago
'The Turk' is a wonderful piece of work for anyone interested in the workings or magical workings of past machinery and technology. The book covers the chess players life and his meetings with the rich and famous. A must read for chess players around the world.