Pub. Date:
Springer New York
Models for Discrete Longitudinal Data / Edition 1

Models for Discrete Longitudinal Data / Edition 1

by Geert Molenberghs, Geert Verbeke
Current price is , Original price is $169.99. You

Temporarily Out of Stock Online

Please check back later for updated availability.


The linear mixed model has become the main parametric tool for the analysis of continuous longitudinal data, as the authors discussed in their 2000 book.

Without putting too much emphasis on software, the book shows how the different approaches can be implemented within the SAS software package.

The authors received the American Statistical Association's Excellence in Continuing Education Award based on short courses on longitudinal and incomplete data at the Joint Statistical Meetings of 2002 and 2004.

Product Details

ISBN-13: 9781441920430
Publisher: Springer New York
Publication date: 12/01/2010
Series: Springer Series in Statistics
Edition description: Softcover reprint of hardcover 1st ed. 2005
Pages: 687
Product dimensions: 6.10(w) x 9.25(h) x 0.06(d)

Table of Contents

Introduction.- Motivating Studies.- Generalized Linear Models.- Linear Mixed Models for Gaussian Longitudinal Data.- Model Families.- The Strength of Marginal Models.- Likelihood-based Models.- Generalized Estimating Equations.- Pseudo-likelihood.- Fitting Marginal Models with SAS.- Conditional Models.- Pseudo-likehood.- From Subject-Specific to Random-Effects Models.- Generalized Linear Mixed Models (GLMM).- Fitting Generalized Linear Mixed Models with SAS.- Marginal Versus Random-Effects Models.- Ordinal Data.- The Epilepsy Data.- Non-linear Models.- Psuedo-likelihood for a Hierarchical Model.- Random-effects Models with Serial Correlation.- Non-Gaussian Random Effects.- Joint Continuous and Discrete Responses.- High-dimensional Multivariate Repeated Measurements.- Missing Data Concepts.- Simple Methods, Direct Likelikhood and WGEE.- Multiple Imputation and the Expectation-Maximization Algorithm.- Selection Models.- Pattern-mixture Models.- Sensitivity Analysis.- Incomplete Data and SAS.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews