Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions

Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions

by Matt Taddy

NOOK Book(eBook)

$23.49 $39.00 Save 40% Current price is $23.49, Original price is $39. You Save 40%.
View All Available Formats & Editions

Available on Compatible NOOK Devices and the free NOOK Apps.
WANT A NOOK?  Explore Now

Overview

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.
Use machine learning to understand your customers, frame decisions, and drive value
The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to:
•Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling•Understand how use ML tools in real world business problems, where causation matters more that correlation•Solve data science programs by scripting in the R programming language
Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science.

Product Details

ISBN-13: 9781260452785
Publisher: McGraw-Hill Education
Publication date: 08/23/2019
Sold by: Barnes & Noble
Format: NOOK Book
Pages: 384
File size: 26 MB
Note: This product may take a few minutes to download.

About the Author

Matt Taddy was from 2008-2018 a Professor of Econometrics and Statistics at the University of Chicago Booth School of Business, where he developed their Data Science curriculum. Prior to and while at Chicago Booth, he has also worked in a variety of industry positions including as a Principal Researcher at Microsoft and a research fellow at eBay. He left Chicago in 2018 to join Amazon as a Vice President.

Table of Contents

Preface
Introduction
1 Uncertainty
2 Regression
3 Regularization
4 Classification
5 Experiments
6 Controls
7 Factorization
8 Text as Data
9 Nonparametrics
10 Artificial Intelligence
Bibliography
Index

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews